기준 좌표계에 대해서 원점을 이동하고 좌표축을 회전시킨 새로운 좌표계에서 점의 좌표는 바뀐다. 원래의 좌표와 바뀐 좌표값 사이의 관계를 주는 변환이 Isometric transformation (isometry)이다. 평면에서 이 변환은 평행이동을 나타내는 파라미터 2개, 그리고 1개의 회전각 파라미터에 의해서 결정이 된다. 회전각이 $θ$고, 평행이동이 $(t_x, t_y)$인 isometry에 의해서 두 점 $(x, y)$가 $(u, v)$로 연결이 되는 경우에, 아래의 식으로 표현이 된다:
$$u=\cos( \theta ) x -\sin (\theta) y + t_x$$
$$ v = \sin (\theta) x + \cos (\theta) y + t_y;$$
따라서 isometry로 연결이 되는 두 점의 조합 $\{(x_1, y_1) \rightarrow(u_1, v_1), (x_2, y_2)\rightarrow(u_2, v_2)\}$ 만 있으면 이들 파라미터를 정확히 결정할 수 있다. 그러나 변환에 필요한 점 정보를 얻는 과정은 필연적으로 노이즈의 영향을 받게 되므로 주어진 모든 점을 정확히 연결하는 변환을 일반적으로 구할 수 없다. 이 경우에는 isometry 파라미터는 일반적으로 최소자승법에 의해서 결정될 수 있다.
최소자승법을 사용하기 위해서는 회전각 $θ$보다는 $a = \cos θ$, $b = \sin θ$로 정의된 새로운 파라미터로 식을 표현하는 것이 더 편리하다. 그러나 이 경우에 파라미터 $a, b$는 서로 독립적이 아니고 $a^2 + b^2 = 1$의 제한 조건을 만족시켜야 한다.
평행이동 파라미터는 질량중심의 isometry 관계로 해결이 되므로, 이 전체 계산을 각각의 질량중심을 원점으로 하는 좌표로 옮겨서 적용하면 더 이상 평행이동을 고려할 필요 없이 회전만 계산하면 된다.
최소자승법의 원리에 따라 입력점의 isometry 결과와 대응점 사이의 거리의 제곱 합 $L$을 주어진 제약조건 내에서 최소화시키는 파라미터 $a, b, λ$를 찾으면 된다:
$$L = \sum_i \big [ (a x_i - b y_i - u_i)^2 + (b x_i + a y_i - v_i)^2 \big] + λ (a^2 + b^2 - 1) ;$$
여기서 $λ$는 제한 조건 $a^2 + b^2 = 1$를 넣기 위한 Lagrange multiplier이다. 극값을 찾기 위해서 $L$를 각각 $a, b, λ$에 대해서 미분해서 다음 조건을 얻는다:
$$\sum_i ( a x_i - b y_i - u_i) x_i + ( b x_i + a y_i - v_i) y_i + λ a = 0 $$
$$ \sum_i ( a x_i - b y_i - u_i) (-y_i) + ( b x_i + a y_i - v_i) x_i + λ b = 0$$
$$ a^2 + b^2 = 1 $$
이 식들을 $a, b, λ$에 대해서 풀면 다음의 관계식을 얻는다:
$$a = ∑(x_i u_ i + y_ i v_ i) / ∑ (x_ i^2 + y_i^2 + λ)$$
$$ b = ∑ (x_i v_ i - y_i u_i) / ∑ (x_i^2 + y_i^2 + λ) $$ 또한, Lagrange 멀티플라이어 $λ$는
$$A = ∑ (x_i u_i + y_i v_i)$$
$$B = ∑ (x_i v_i - y_i u_i);$$
로 놓으면, $a^2 + b^2 = 1$ 에서
$$∑ ( x_i^2 + y_i^2 + λ ) = \sqrt {A^2 + B^2}; $$
임을 쓰면 된다. 따라서 회전각은
$$\cos \theta = a = \frac{A}{ \sqrt {A^2 + B^2}}$$
2차원 이미지의 기하학적인 변형 중에서 평행이동, 회전 및 전체적인 크기의 변화를 주는 변환이 similarity transformation이다. 이 변환은 두 직선이 이루는 각을 보존하고 길이 비를 유지한다. 따라서 similarity 변환 후 물체의 모양은 변환 전과 같은 형태를 가진다. 이 변환보다도 더 일반적인 2차원의 기하학적인 변환은 affine transformation이다. Affine 변환은 한쪽 방향으로의 밀림(sheer)도 허용한다. 평행한 두 직선은 affine 변환 후에도 여전히 평행하다.
Similarity transformation은 전체적인 크기를 바꾸는 scale parameter($s$) 1개와 회전각($θ$) 1개, 그리고 $x, y$축으로의 평행이동을 나타내는 parameter ($t_x$, $t_y$) 2 개를 합해서 총 4개가 있어야 한다. 이 parameter에 의해서 원본 이미지의 픽셀 $(x, y)$가 변환된 이미지의 픽셀 $(u, v)$에 대응한다고 하면, 이들 간의 관계는 다음식으로 주어진다.
$$u = s\cos (θ) x - s \sin (θ) y + t_x$$
$$v = s \sin (θ) y + s \cos (θ) y + t_y$$
따라서 원본 영상의 2점에 대응하는 정보만 주어지면 파라미터 $(s, θ, t_x, t_y)$를 유일하게 결정할 수 있다.
$$(x_1, y_1) \rightarrow (u_1, v_1)$$
$$ (x_2 , y_2) \rightarrow (u_2, v_2)$$
그러나 많은 경우에는 기준점을 잡는데 에러 등을 고려하여서 일반적으로 원본 영상의 $N(\ge 2)$ 개의 점에 대응하는 정보를 주게 되는데, 이 경우에 변환 관계식은 overdetermined 되어서 해를 구할 수 없는 경우도 있다. 이 경우에는 최소자승법을 써서 변환점과 변환식에 의해서 의해서 주어지는 값의 차이를 최소화시키는 파라미터를 구해서 쓰면 된다.
얼굴인식용 training data set을 만들기 위해서 얼굴을 정렬시키는 데 사용한 예: - 양 눈의 위치 변환: (70,93), (114, 84) --> (30,45), (100,45)로 변환( linear interpolation사용) - 실제로 사용되는 변환은 정해진 dst영역으로 매핑하는 src영역을 찾아야 하므로, 역변환이 필요하다. - 필요한 역변환은 src와 dst의 역할만 바꾸면 쉽게 구할 수 있다.
RANSAC 알고리즘을 써서 주어진 2차원 점집합에서 원을 추정한다. 원을 만들기 위해서는 최소한 3점이 필요하고, 또 일직선에 있지 않아야 한다. 이렇게 만들어진 원은 세 점을 꼭짓점으로 하는 삼각형의 외접원(circumcircle)이다. 주어진 외접원에서 크게 벗어나지 않는 inliers를 찾는다(추가로 이 inliers에 대해 최소자승법으로 원의 중심과 반지름을 다시 구해서 보다 정밀하게 추정하는 과정을 넣을 수도 있다). 무작위로 선택된 세 점에 대해 위의 과정을 반복 시행해서 구한 원 중에서 가장 많은 inliers를 포함하는 원을 결과로 사용한다.
이미지에서 관찰된 점집합이 $\{(x_i, y_i)| i = 1, 2,\dots, N\}$이 있다. 이 점집합을 직선 $y = a + bx$ 로 피팅을 하고 싶을 때, 보통 최소자승법을 이용하는데, 원리는 직선의 방정식이 예측한 $y$값과 실제 관찰한 $y$값의 차이의 제곱(=square deviation)을 최소화시키는 직선의 기울기 $a$와 절편 $b$를 찾는 것이다:
$$\chi^2(a, b) = \sum_i |y_i - (b x_i +a) |^2 $$
데이터를 얻는 측정 과정에서 측정값 $y_i$는 랜덤 노이즈를 포함하게 되고, 이 노이즈는 참값 $y(x)$ 근방에서 정규분포를 한다고 가정을 할 수 있다. 만약 모든 측정의 노이즈가 동일한 표준편차 $\sigma$를 갖게 된다면, $N$개의 관측 데이터가 나타날 확률(likelihood)은 (개별 측정은 IID 조건을 만족한다고 전제)
의 형태가 된다. 따라서 최소자승법은 이 likelihood를 최대화시키는 파라미터를 찾는 방법이 된다. 최소자승법은 피팅 파라미터를 주어진 데이터를 이용해서 표현할 수 있는 장점은 있지만, outliers에 대해서 매우 취약하다 (아래의 결과 그림을 참조). 이는 적은 수의 outlier도 χ2에 큰 기여를 할 수 있기 때문이다. 따라서 피팅을 좀 더 robust 하게 만들기 위해서는 outliers가 likelihood에 기여하는 정도를 줄여야 한다. 이를 위해서는 likelihood의 지수 인자를 큰 에러에서 덜 민감하게 반응하는 꼴로 바뀌어야 한다. 이를 만족하는 가장 간단한 것 방법 중 하나가 square-deviation 대신에 absolute-deviation을 이용하는 것이다:
그러나 이 식을 사용하는 경우에는 최소자승법과 다르게 기울기 $a$와 절편 $b$를 주어진 데이터 $\{(x_i, y_i)\}$로 표현할 수 없고, 반복적인 방법을 이용해서 찾아야 한다.
수열 $\{c_i\}$에 대해 합 $\sum_{i} |c_i - a|$은 $a$가 수열의 median 값일 때 최솟값을 갖는다는 사실을 이용하면 (증명: 극값을 구하기 위해서 $a$에 대해서 미분하면, $0=(\sum_{c_i > a} 1)-(\sum_{c_i < a} 1)$: 합은 $a$가 $c_i$ 보다 큰 경우와 작은 경우로 분리. 따라서 0이 되기 위해서는 작은 경우와 큰 경우의 수가 같아야 한다. 고로, $a = \text{median}\{c_i\}$ q.e.d.). 고정된 절편 $b$에 대해서 absolute deviation을 최소로 만드는 기울기 $a$는
$$a= \text{median} \{ y_i - b x_i\}$$
임을 알 수 있다. 그리고 absolute deviation식을 절편 $b$에 대해서 미분해서