Loading [MathJax]/jax/output/CommonHTML/jax.js

12πiγ+iγiestdss21=I0(t)12πiγ+iγiestdss2+1=J0(t)

g(z)=eztz21을 적분하기 위해서 그림과 같이 Browmwich contour를 선택하자. 위상은 πarg(z1), arg(z+1)π

g(z)dz=0이므로 

I=12πiγ+iγiestdss21=k12πiCkeztdzz21 

C2에서 z1=(1x)eiπ, z+1=(1+x)ei0이므로 

C2=11extdx1x2eiπ/2=i11extdx1x2

C4에서 z1=(1x)eiπ, z+1=(1+x)ei0이므로

C4=11extdx1x2eiπ/2=i11extdx1x2

이고 C1=C3=0이므로  

I=1π11extdx1x2

x=cosθ로 치환하면

I=π0etcosθdθ=1πk=0π0(tcosθ)kdθk!=1π[π+π12t22!+π3412t44!+π563412t66!+]=1+t222+t42242+t6224262+=k=0(t2)2k(k!)2=I0(t)

I0(t)는 modified Bessel function of the first kind and zero order.

Note: L1[1s2+1]=J0(t)

π2arg(z+i), arg(zi)3π2

residue 정리에 의해서 

I=12πiγ+iγiestdss2+1=k12πiCkeztdzz2+1

C2에서 zi=(1y)eiπ/2, z+i=(1+y)eπ/2이므로

C2=11eiyt(idy)1y2=i11eiytdy1y2 

C4에서 zi=(1y)ei3π/2, z+i=(1+y)eiπ/2이므로 

C4=11eiyt(idy)1y2eiπ=i11eiytdy1y2

따라서 C2+C4=2i21cos(yt)dy1y2 

I=1π11cos(yt)dy1y2=1πππcos(tsinθ)dθ=J0(t)

J0(t)는 Bessel function of the first kind  and zero order.

728x90
,