Fortune2.zip
다운로드
사용자 삽입 이미지

 

 

사용자 삽입 이미지

 

평면에서 보로노이 다이어그램을 계산하는 알고리즘 중에 1980년대에 Fortune에 의해서 발견이 된 Sweep line 알고리즘에 대해서 살펴보겠다. 이 알고리즘은 보로노이 다이어그램 계산문제의 optimal 한 답 중에 하나이다(~O(n * log(n)). Fortune이 자신의 알고리즘을 직접 C로 구현한 것이 있는데 이것은 웹상에서 쉽게 구할 수 있다. 그러나 알고리즘의 얼개는 간단하나 구현에 들어간 자료구조 등을 간단히 않아서 코드를 이해하는 것이 쉽지 않았다(이에 비하면 incremental delaunay triangulation은 매우 단순하다). 몇 번을 간단한 자료구조를 이용해서 재 작성을 해보려고 했는데 잘 되지 않았다. 인터넷에서 구할 수 있는 다양한 구현 소스를 분석해 보았으나 쉬운 것을 찾기가 힘들었다(triangle.c에서도 구현되어 있고, 자바로도 구현이 된 것을 찾을 수 있다.) 원래의 목적은 Fortune의 코드가 메모리 처리를 잘못하여 메모리 leak이 발생하여서 이 문제를 해결하려고 시도한 것인데, 메모리 문제는 자바의 경우에 처럼 가비지 콜렉터를 만들어서 처리할 수는 있다. 이 알고리즘의 구현에 들어가는 기본적인 자료구조는 priority queue와 balanced binary tree이다. 이들의 기본적인 구현은 이미 잘 알려져 있으므로 이것들을 직접적으로 알고리즘에 적용하는 문제만 남는다. balanced binary tree로 만들어진 자료구조를 쓰면 자료를 찾는 시간이 O(log(n))의 시간 복잡도를 주지만, 이것이 알고리즘을 직관적으로 보는 것을 방해하므로 여기서는 이중 연결 리스트를 이용하도록 한다. 전체적으로 알고리즘은 O(n^2)의 복잡도를 가진다.

1. priority queue 구성: 주어진 입력점들을 가지고 구성한다. 알고리즘 중간에 세 점으로 원이 구성이 되는 circle event가 생성이 되는데 이것은 따로 event 큐를 구성한다. event의 우선순위는  x 좌표의 순서에 의해서 구성하고 동일한 x 좌표값에 대해서는 y값이 작은 순서대로 구성한다(compare 구조체에서 point와 event에 대한 비교 연산자를 정의한다).

std::priority_queue <point, std::vector <point>, compare> points ; // 입력점(point-구조체)들로
                                                                   // 만들어지는 priority_queue;
std::priority_queue <event*, std::vector <event*>, compare> events;//circle events(event-구조체);

2. site event 처리: sweep line(x=const)은 전체 평면을 반으로 나누는 역할을 한다. 알고리즘은 sweep 라인이 쓸고 지나간 영역에서만 관심 영역이다. sweep라인과 주어진 점은 하나의 포물선을 정의할 수 있다(주어짐 점이 포물선의 초점을 구성함). 따라서 sweep 라인이 진행하면 sweep line의 왼편의 입력점들은 각각 하나의 포물선을 형성하고, 이 포물선들의 구간 중에서 sweep라인에 가장 가까운 부분은 포물선 arc로 연결인 되는 하나의 beach line을 형성한다.  sweep라인이 새로운 입력점을 지나면 여기서 새로운 포물선 arc가 생기는데, 이것은 이미 만들어진 beach라인을 구성하는 포물선 arc 중 하나를 둘로 가르고, 그 자신이 새로운 beach 라인의 일부를 구성하게 된다; sweep라인이 전진하면서 비치라인을 구성하는 arc가 다른 arc에 파 묻혀서 없어지는 경우가 생긴다. 이 경우가 circle event가 만들어지는 시점이다.

.......................

*           BEFORE                                  AFTER
*
*           new point                               new arc
*               |                                       |
*     __        |       _____                   __      |       _____
*       \      \|/        |                       \    \|/       arc a
*        \      `         |                        \    `       __|__
*         \     X         |                         p------X    __|__<-- arc c
*      a   |             arc a                  a    |            |
*         /               |                         /            arc a
*        /                |                        /              |
*      /__              __|__                     /__           __|__
*   __/    \              |                    __/   \            |
*           \             |                           \           |
*            \            |                            \          |
*       b     |          arc b                  b       |        arc b
*            /            |                            /          |
*           /             |                           /           |
*        __/            __|__                      __/          __|__

 

3. circle event 처리; sweep라인이 각각의 site에 도달하면 새로운 포물선의 arc가 비치라인에 추가가 되는데 sweep 라인으로부터 멀어진 arc들은 어느 시점에서 없어져야 한다. 이것은 인접하는 세 개의 arc들의 교점이 현재의 sweepline 위치에서 하나로 만들어져서 중앙의 arc가 없어지는 경우로 이것을 circle event라고 한다. 이때 만들어지는 교점은 보로노이 에지의 꼭짓점을 구성하게 된다. circle event에서는 나머지 두 개의 남은 arc의 교점이 trace 하는 새로운 에지가 생기게 된다.

*    __
*       \
*   a    \
*         \
*   __     |
*     `   /
*      \ /
*   b   X           <-- Arc b is overtaken at point X (this is a circle center)
*     / \
*   __,   \
*          \
*           \
*   c        |
*           /
*          /
*         /

*
*       BEFORE                                              AFTER
*
*      \        arc a                                   \
*        \                                               \              a.s0
*         \   <-- a.s0                                    \               |
*          \                                               \             \|/
*           \                                               \             `
*            \                                               \
*    arc b   X     <-- termination point                      .--------------------<-- new segment
*           /                                                /          
*          /                                                /            .
*         /   <-- c.s1                                     /            /|\ 
*        /                                                /              |
*       /    arc c                                       /              c.s1
*      /      

                                 

//포물선 arc를 정의하기 위한 클래스;
struct arc {
    point p;                //focus of parabola;
    arc *prev, *next;       //double linked-list;
    event *e;
    ////////////////////////////////////////////////////
    seg *s0 ;               //edge of voronoi starting from break point;
    seg *s1;                //edge of voronoi starting from break point;
    arc(point _p, arc *_a=0, arc *_b=0)
        : p(_p), prev(_a), next(_b), e(0), s0(0), s1(0) {}
};

// voronoi edge를 정의하는 segment class;
struct seg {
    point start, end;                           //defines segment;
    bool done;
    int ref ;                                   //referece count in order to distingush the double edges;
    seg(point _p, int _ref=0)
        : start(_p), end(0,0), done(false), ref(_ref)
    { output.push_back(this); }                 //garbage collector;
    void finish(point p) { if (done) return; end = p; done = true; }
};

// 메인 wrapper;
int fortune_main(std::vector<POINT>& pts,            			//voronoi points;
                 std::vector<std::pair<CPoint,CPoint>>& edges)  //voronoi edges;
{
    if (pts.empty()) return 0;
    // point priority_queue구성; // degeneray를 막기 위해 작은 random #을 추가하는 것이 좋다;
    for (int i = 0; i < pts.size(); i++)
        points.push(point(pts[i].x. pts[i].y));
    // body of algorithm ;
    while (!points.empty()) {
        if (!events.empty() && events.top()->x <= points.top().x) 
            process_event() ;  //circle event ;
        else 
            process_site() ;   //site event;
    }
    //for remaining circle events if any;
    while (!events.empty()) 
        process_event() ;
                                                                      
    //2. prepare output edges and clean memory;
}

arc * root=NULL;                              //global variable;
void process_site() {
    point P= points.top(); points.pop(); //because popping return void in STL;
    if (!root) { // root of double linked list for arcs(global);
        root = new arc(P) ; return  ;
    }
    //
    for (arc *a = root; a; a = a->next) {
        point Q;
        if (intersect(P, a, &Q)) {//arc a와 점P에서의 포물선(degenerate 된)이 만나는 점 Q;
            duplicate_arc(P, a) ; //교차하는 arc를 둘로 만든다 
                                  //(다음 arc가 있고, 만약에 이것과도 교차하면 circle event이으로 제외)
            insert_new_arc(P, a, a->next); //새 arc를 중간에 삽입한다;
            // 새 arc의 에지 세팅 ::교차점을 출발점으로 하는 두개의 반직선을 만든다: 
            // 도착점은 circle event에 대부분 결정되고, 나머지는 후처리 과정에서 결정)
            a = a->next ;
            a->prev->s1 = a->s0 = new seg(Q, ref_count) ;
            a->next->s0 = a->s1 = new seg(Q, ref_count++) ; //쌍으로 생성되는 반직선을 identify하기 위해서 동일번호를 부여함.
            //새 site 추가로 비치라인을 구성하는 arc의 초점들과 circle event를 만들 수 있는가 체크;
            check_circle_event(a, P.x) ;
            check_circle_event(a->prev, P.x) ;
            check_circle_event(a->next, P.x) ;
        }
    } // for-;
};
//
void process_event(){
    event *e = events.top(); events.pop();
    if (e->valid) {
        // start a new edge.(single edges)
        seg *s = new seg(e->p, ref_count++);
        // remove the associated arc from the front. and attach a new segment;
        arc *a = e->a;
        remove_arc(a, s);
        // finish the edges before and after a==>new voronoi vertex;
        if (a->s0) a->s0->finish(e->p);
        if (a->s1) a->s1->finish(e->p);        
        // recheck circle events on either side of p:
        if (a->prev) check_circle_event(a->prev, e->x);
        if (a->next) check_circle_event(a->next, e->x);
        delete a;
    }
    delete e; 
};
// Look for a new circle event for arc a.
void check_circle_event(arc *a, double x0/*=current sweep-line*/) { 
    // Invalidate any old event.
    if (a->e && a->e->x != x0)  a->e->valid = false;
    a->e = NULL;
    if (!a->prev || !a->next) return;

	point &A = a->prev->p ;
    point &B = a->p ;
    point &C = a->next->p ;
    double maxx;
    point center;
    //collinear가 아니고, 최대값이 현재의 site event위치보다도 큰 경우에;
    //점 A,B,C에 의해서 형성이 되는 원 중심(center)과 최우측x(maxx) 좌표;
    if (circle(A, B, C, &maxx, &center) && maxx > x0) {                                                         
        // create new event.
        a->e = new event(maxx, center, a);
        events.push(a->e);
    }
}

나머지 함수들은 모두 단순한 구현이므로 생략한다;

보로노이 에지는 seg collector에서 각각의 segment를 끄집어내어서 그리면 된다. 그러나 각각의 segment는 보로노이 에지를 전체를 커버하는 것이 아니다. site event인 경우에는 항상 듀얼로 반직선을 생성하는데. 이 두 개의 반직선이 하나의 보로노이 에지를 정의한다(따라서 ref를 참조하면 온전한 하나의 에지를 찾을 수 있다). circle event의 경우에는 에지가 듀얼로 생성하지 않았으므로 이 경우에는 하나의 segment가 그 에지를 표현한다. 에지 액세스를 쉽게 하기 위해서는 모든 에지를 듀얼 구조로 만들어서 사용할 수 있다.

n 개의 점들의 보로노이 다이어그램은 얼마나 많은 꼭짓점과 에지를 가질까?

이것은 오일러 공식 V-E+F=2를 사용하면 된다. 보로노이 다이어그램은 경우 바깥쪽의 에지들은 무한대로 연결이 되어 있다. 이것을 무한대에서 가상의 꼭짓점을 가정하고 그것에 연결이 되어 있다고 생각하면 된다. 따라서 V --> V+1로 계산을 해야 한다. 오일러 공식 : V+1-E + F= 2; 여기서 F=n임을 알 수 있다. (n개의 점들이 하나의 face상에 놓여 있음)그리고 하나의 에지가 두 개의 꼭짓점을 연결하므로 각각의 꼭짓점에서 나간 에지의 합(=deg(v))을 계산하면 2*E 개 임을 알 수 있다. sum deg(v) = 2 * E;그런데 각각의 꼭짓점에서는 적어도 3개 이상의 에지와 연결이 되어 있으므로 위식의 좌변은 (V+1) * 3 <= 2 * E;를 준다. 따라서 오일러 공식과 이 부등식을 연관시키면 V <=  2*n - 5; E <=  3*n - 6;임을 알 수 있다. 즉 필요한 메모리의 양은 입력점의 수의 선형적으로 비례한다.

따라서 전체 이벤트의 개수는 site 이벤트와 꼭짓점에 해당하는 circle event 만큼이 있으므로 O(3*n) 정도이다. 각각의 event에 대해서 arc노드를 검색해야 하므로 O(n) 번 탐색을 해야 한다(balanced binary tree의 경우에는 log(n)). 따라서 알고리즘의 복잡도는 O(n^2 ( n*log(n))이다./**** http://blog.naver.com/helloktk/80041603288*/

** 첨부된 실행파일로 알고리즘을 테스트해 볼 수 있다(중복된 입력점은 제거하였고, 세 점이 일직선상에 놓인 것을 방지하기 위해서 작은 랜덤 값을 첨가하였다)

 

728x90

'Computational Geometry' 카테고리의 다른 글

Polygon Triangulation  (4) 2008.05.25
Polygon Fill  (0) 2008.05.22
Triangulating Monotone Polygon  (0) 2008.05.22
Trapezoidalization  (0) 2008.05.22
Optimizing Polygon Triangulation  (0) 2008.05.22
,