(매우 무거운) 롤 화장지를 줄을 이용해서 벽에 걸어두었다. 벽과 화장지 사이에 마찰은 줄에 걸리는 장력을 줄이는데 도움이 될까? 

1. 도움이 된다.

2. 오히려 장력이 더 커진다.

3. 마찰이 있던 없든 장력은 영향을 안 받는다.

화장실을 사용할 때마다 고민을 해보면 변비 해소에 도움이 될 수도 있다

728x90
,

진자의 주기를 구할 때 보통 작은 진동 근사를 사용한다. 진자의 진폭이 크지 않는 경우 주기는 진폭에 무관하게 일정한 값 $T_0=2\pi \sqrt {\frac {\ell}{g}}$를 갖는다. 그럼 진폭이 커지는 경우는 어떻게 될까?

운동 방정식을 써도 되지만 역학적 에너지가 보존되므로 이를 이용하면(회전 관성: $I=m\ell^2$, 진폭=$\theta_0$)

$$ \frac {1}{2} I \Big(\frac {d\theta}{dt}\Big)^2 + mg \ell (1 - \cos\theta)=\text{const}= mg\ell (1- \cos \theta_0) $$$$  \rightarrow \quad \Big(\frac {d\theta}{dt} \Big)^2  =\frac {2g}{\ell} (\cos \theta- \cos \theta_0).$$

우변을 $\theta_0, ~\theta$에 대해서 전개하면

\begin{align} \Big( \frac { d\theta}{dt } \Big)^2  &= \frac {g}{\ell}\Big(\theta_0^2 -\frac {1}{12} \theta_0^4 - \theta^2 + \frac {1}{12} \theta^4+...\Big) \\ &= \frac{g}{\ell}(\theta_0^2 -\theta^2) \Big( 1 - \frac{1}{12} (\theta_0^2 + \theta^2)+...\Big)\end{align}로 써지는데 작은 각 근사를 벗어났을 때 가장 큰 기여를 하는 $-(\theta_0^2 + \theta^2 ) /12$항이  음의 기여를 한다. 이는 같은 위치에서 작은 각 근사를 할 때보다 각속도가 더 작아짐을 의미한다. 따라서 진자가 더 느리게 움직여서 주기가 길어질 것이라는 예측을 구체적인 계산 없이도 할 수 있게 된다.

 

이제 주기를 구해보자. 에너지 보존식에서 변수 분리를 해서 적분하면 주기에 대한 식

$$T = \int dt = 4 \sqrt {\frac {\ell}{2g}} \int_0^{\theta_0} {\frac {d\theta}{\sqrt {\cos \theta - \cos \theta_0}}}$$을 얻는다. 여기서 $\sin(\theta/2) = \sin (\theta_0/2) \sin(\varphi )$로 치환을 하면

$$T = 4\sqrt { \frac { \ell }{g}} \int_0^{\pi/2} {\frac {d \varphi}{\sqrt {1 - k^2 \sin^2 \varphi}}}, \quad k^2 = \sin^2(\theta_0/2).$$

진폭이 작은 경우($\theta_0  \ll 1 ~\Rightarrow ~k\rightarrow 0)$는 적분 값이 $\frac {\pi}{2}$이므로 $T \rightarrow 2\pi \sqrt {\frac {\ell}{g} }$가 됨을 확인할 수 있다.  위 적분은 타원 적분이라고 부르고 $k$가 주어지면 수치 연산을 통해서 그 값을 얻을 수 있다. 

 

좀 더 직관적으로 진폭에 따른 주기의 변화를 보기 위해서 (진자의 경우 $k^2 \le \frac {1}{2}$이므로) 급수 전개를 하면, 

$$\frac {1}{\sqrt {1-k^2 \sin^2\varphi}}   = 1 +\frac {1}{2} k^2\sin^2 \varphi +\frac {1}{2}\frac {3}{2} k^4 \sin^4 \varphi +\dots $$

이므로 주기는

$$T = 2\pi \sqrt { \frac {\ell}{g} } \left [ 1 + \Big( \frac {1}{2} \Big)^2 k^2 + \Big( \frac {1}{2} \frac {3}{4} \Big)^2 k^4 + \dots \right]\qquad \left( k = \sin \frac{\theta_0}{2} \right)$$

로 표현된다. 이 식은 진자의 진폭($\theta_0$)이 커지면 주기도 길어진다는 것을 명확히 보여준다.

강의동영상을 볼 수 있는 곳:

youtu.be/34zcw_nNFGU

 

728x90

'Physics > 역학' 카테고리의 다른 글

바닥에 먼저 닿는 물체는?  (0) 2021.01.21
마찰력은 도움이 될까?  (0) 2021.01.21
물이 새는 두레박이 달린 진자의 주기는  (0) 2021.01.17
왜 공은 움직이지 않을까?  (0) 2021.01.17
두레박이 달린 진자  (0) 2021.01.17
,

물이 담긴 두레박 진자가 있다. 두레박 바닥에 구멍을 뚫려 있어 물이 샌다면 주기는 어떻게 변할까?

1. 변함없다.

2. 짧아진다.

3. 길어진다.

4. 짧아졌다가 다시 길어진다.

5. 길어졌다가 다시 짧아진다.

 

참고로 진자의 주기는 질량에는 무관하다.

두레박에 페인트를 담아 그린 패턴

더보기

진자의 주기는 회전축에서 진자의 무게중심까지의 거리인 유효거리에 제곱근에 비례한다. 두레박에서 물이 빠지면 물의 질량중심이 회전축에서 멀어지므로 진자 전체의 질량중심도 멀어진다. 따라서 진자의 유효 길이가 길어지는 효과가 생기고 주기도 길어진다. 그런데 물이 너무 많이 빠지면 남아 있는 물에 의한 질량중심의 기여가 줄어들므로 물이 완전히 빠질 때까지 다시 유효 길이가 감소한다. 따라서 주기도 다시 감소한다.

 

728x90
,