Bezier 곡선은 control points $\{ \mathbf {P}_i\}$의 선형 결합으로 주어진다:

$$\mathbf {B}(t) = \sum_{i=0}^{n} B_{ i, n} (t) \mathbf {P}_i , \quad B_{i,n}(t)=\left(\begin {array}{c} n \\ i \end {array} \right) t^i (1-t)^{n-i}.$$

Bernstein 다항식 $B_{i, n}(t)$이 control points 선형 결합의 가중치를 역할을 하는데 0과 1 사이의 양의 실수 값을 가진다. 그리고 이들 가중치의 합은 1이다:

$$ 0\le  B_{ i, n}(t) \le 1, \quad i=0,1,2,... n ,    \quad    0\le t\le 1 $$

$$\sum_{i=0}^{n}  B_{i, n}(t) = 1$$

이는 Bezier 곡선이 control points가 만드는 convex region 내부에 있음을 의미한다. Bezier 곡선의 convexity 성질은 여러 좋은 특성을 준다.  몇 가지만 나열하면, 첫째가 Bezier 곡선은 항상 컨트롤 포인트의 convex hull 내에 놓이게 되므로 곡선의 제어 가능성을 보장한다. 둘째는 교차 여부를 쉽게 확인할 수 있다. 또한 culling을 가능하게 한다.

 

 
728x90

'Computational Geometry' 카테고리의 다른 글

Bezier Smoothing  (0) 2021.04.23
Flatness of Cubic Bezier Curve  (0) 2021.04.23
De Casteljau's Algorithm  (0) 2021.04.22
Arc Length of Bezier Curves  (0) 2021.04.21
Bezier Curve Approximation of an Ellipse  (0) 2021.04.11
,