update:2024.10.28

$$ I =  \text{Pr}\int_{-1}^1 \sqrt{ \frac{1+x}{1-x}} \frac{1}{(2-x)x} dx$$

복소함수 

$$f(z)=\left(\frac{1+z}{1-z} \right)^{1/2}\frac{1}{(2-z)z}$$

의 contour $\Gamma$에 대한 적분을 고려한다. $z=\pm1$이 branch point이고, $z=0,2$은 simple pole이다. cut line은 그림처럼 잡고, 위상은 $$0 \le  \arg(z+1) \le 2\pi,\quad  -\pi \le \arg(1-z)\le \pi $$로 선택한다.

residue 정리에 의해서 

$$ \int_\Gamma f(z) dz = \left(\oint_{C_\infty} - \sum \int _{C_i}   \right)f(z) dz = 2\pi i \times \text{Res}(z=2) = \sqrt{3} \pi  \\ \to ~~ \sum  \int_{C_i} f(z) dz =- \sqrt{3}\pi $$

$C_1$: $z+1=\epsilon e^{i \theta}$ $$\int_{C_1} f(z)dz = O(\sqrt{\epsilon}\epsilon)\rightarrow 0$$  

$C_5$: $z-1=\epsilon e^{i \theta}$ $$\int_{C_5} f(z)dz = O(\sqrt{\epsilon})\rightarrow 0$$  

$C_3$: $$z=\epsilon e^{i \theta}~(\theta: \pi \rightarrow 2\pi)\\z+1= e^{i2\pi}\\z-1= e^{-i\pi}\to 1-z= e^{i0}$$이므로

$$\sqrt{\frac{1+z}{1-z}} =\sqrt{\frac{e^{i2\pi }}{e^{i0}}} = e^{i \pi}  \\ \to \quad \int_{C_3} f(z) dz = e^{i \pi}   \int_{\pi}^{2\pi}  \frac{i \epsilon e^{i\theta}}{2\epsilon e^{i \theta}} d\theta =- i \frac{\pi}{2}.$$ 

$C_7$:  $$z=\epsilon e^{i\theta}~(\theta:0 \rightarrow \pi)\\z+1=e^{i0}\\ z-1= e^{i\pi} \to 1-z = e^{i0}$$이므로

$$\sqrt{\frac{1+z}{1-z}} =\sqrt{\frac{e^{i0}}{e^{i0}}} = 1 \\ \to \quad \int_{C_7} f(z) dz =  \int_0^\pi  \frac{i\epsilon e^{i \theta}}{2\epsilon e^{i \theta}} d\theta =i \frac{\pi}{2} $$

$C_2 + C_4$: $$z+1= (x+1) e^{2i \pi }~(x: -1 \rightarrow  1) \\z-1=(1-x)e^{-i\pi} \to 1-z=(1-x) e^{i0}$$이므로

$$\int_{C_2 + C_4} =  e^{i \pi}  \int_{-1}^{1} \sqrt{\frac{1+x}{1-x}}\frac{dx}{(2-x)x}=-I.$$

$C_6 + C_8$: $$z+1= (x+1) e^{i 0}~(x:  1 \rightarrow -1)\\z-1=(1-x)e^{i\pi} \to 1-z=(1-x)e^{i 0}$$이므로

$$\int_{C_6 + C_8}  = \int_{1}^{-1} \sqrt{\frac{1+x}{1-x}}\frac{dx}{(2-x)x}= - I$$

$C_\infty$: $z= R e^{i \theta}$ $$ \int_{C_\infty} f(z)dz = O( 1/R) \rightarrow0.$$

이 결과를 모두 정리하면,

$$ I =\text{Pr} \int_{-1}^1 \sqrt{\frac{1+x }{1-x}} \frac{dx}{(2-x)x}=\frac{\sqrt{3}}{2}\pi.$$

 

728x90

'Mathematics' 카테고리의 다른 글

Integration along a branch cut-014  (0) 2022.01.03
Integration along a branch cut-013  (0) 2021.12.22
Integration along a branch cut-011  (0) 2021.01.04
Integration along a branch cut-010  (0) 2021.01.04
Integration along a branch cut-009  (0) 2021.01.03
,

$$I= \int_c^\infty \frac{dx}{x^2 - 1} \quad(c > 1)$$

복소함수 $f(z)= \frac{\log(z-c) }{ z^2 -1}$을 그림의 contour을 따라 적분을 한다. $z=c, \infty$가 branch point이므로 $x>c$인 $x$축을 따라 cut line을 설정한다: $0 \le \arg(z-c) \le 2\pi$. 또, $z=\pm 1$은 simple pole이다.

$C_2$:  $x-c=\epsilon e^{i\theta}$로 매개화하면 $$ \int f(z) dz = O( \log(\epsilon) \epsilon ) \rightarrow 0.$$$C_1$: $z-c = (x-c) e^{i 2\pi}~(x: \infty \rightarrow c)$이므로,$$ \int_{C_1} f(z) dz = \int_\infty ^c \frac{\log(x-c) + 2\pi i}{x^2 -1}dx = -\int_c^\infty \frac{\log(x-c) + 2\pi i }{x^2 - 1}dx $$$C_3$: $z-c= (x-c) e^{i 0} ~(x: c \rightarrow \infty)$이므로,$$ \int_{C_3} f(z) dz = \int_c^\infty \frac{\log( x-c) }{x^2 - 1} dx $$ $C_\infty$: $z = Re^{i \theta}$로 매개화하면, $$\int f(z) dz  = O( \log(R) /R ) \rightarrow   0$$ 따라서, $$\int_{\Gamma}  f(z) dz= 2 \pi i \times  \big[\text{Res}(z=1) + \text{Res}(z=-1) \big] =2 \pi i \times  \left[ \frac{\log (c-1)}{2} + \frac{ \log(c+1)}{-2}\right]$$

정리하면,

$$\int_c^\infty \frac{dx}{x^2 -1} = \log\sqrt{\frac{c+1}{c-1}}$$

물론 $\frac{1}{x^2-1} = \frac{1}{2} (\frac{1}{x-1} - \frac{1}{x+1})$임을 이용하는 것이 더 쉽다.

 

728x90

'Mathematics' 카테고리의 다른 글

Integration along a branch cut-013  (0) 2021.12.22
Integration along a branch cut-012  (0) 2021.01.05
Integration along a branch cut-010  (0) 2021.01.04
Integration along a branch cut-009  (0) 2021.01.03
Integration along branch cuts-008  (0) 2021.01.03
,

update: 2024.10.28;

$$ I = \int_{-1}^1 \sqrt{1-x^2} dx$$

복소함수를 $f(z)= \sqrt{z^2-1}$으로 선택하면, $z=\pm i$가 branch point이므로 cut line을 $z=-i$와 $z=+i$을 잇는 선분으로 잡는다. 위상은 $$-\frac{\pi}{2} \le \arg(z-i),~\arg(z+i)  \le \frac{3\pi}{2} $$로 선택하면 된다. $z=\infty$에서 residue가 있으므로 그림과 같은 contour에서 적분을 고려하자. 

$C_\epsilon(z=i)$, $C_{\epsilon'}(z=-i)$: $$ \int f(z) dz = O(\sqrt{\epsilon} \epsilon) \rightarrow  0.$$ $C_1$: $$z- i = (1-x)e^{-i \pi/2}  \\z+i = (1+x)e^{i\pi/2}~(x:-1\to 1)$$이므로 $$\int_{C_1}   = \int_{-1}^{1}\sqrt{1-x^2}  d( i  x) = i I$$ $C_2$: $$z-i = (1-x)e^{i 3\pi/2} \\ z+i=(1+x)e^{i\pi/2}~(x:1\to-1)$$이므로 $$\int_{C_2}  = \int_{1}^{-1} \sqrt{1-x^2} e^{i\pi}   d ( i x) = i I$$ 무한대에서 residue를 결정하기 위해서 $$ \sqrt{z^2-1} = z \sqrt{1-1/z^2 } = z - \frac{1}{2z}+ \cdots \qquad \to~~ \text{Res}f(\infty) = \frac{1}{2}  \\ \int_{C_\infty} f(z) dz =  2\pi i \times  \text{Res} f(\infty) =  i \pi $$ $\Gamma = C_\infty - \sum C_k$ 내부에서 $f(z)$가 analytic 하므로 $$\int _{C_\infty} f(z)dz = \sum \int_{C_i} f(z) dz $$이다. 따라서 $$ I = \int_{-1}^1 \sqrt{1-x^2} dx  =\frac{\pi}{2}$$ 이 결과는 $x=\sin \theta$의 치환적분을 이용하면 더 쉽게 구할 수 있다.

728x90

'Mathematics' 카테고리의 다른 글

Integration along a branch cut-012  (0) 2021.01.05
Integration along a branch cut-011  (0) 2021.01.04
Integration along a branch cut-009  (0) 2021.01.03
Integration along branch cuts-008  (0) 2021.01.03
Integration along a branch cut-007  (1) 2020.12.31
,

$$I = \int_{-\infty}^\infty \frac{p e^{ipr} dp}{\sqrt{p^2 + m^2 }  } \quad   (r>0,~m>0)$$

복소함수 $$f(z) =\frac{z e^{izr} }{\sqrt{z^2 + m^2}}$$의 contour 적분을 이용한다. $z=\pm im$가 $f(z)$의 branch point이므로 그림과 같이 cut line을 잡는다(적분은 upper half plane에서 한다). 위상은 $$-\frac{3\pi}{2} \le \arg(z-im)\le \frac{\pi}{2},\quad -\frac{\pi}{2}\le \arg(z+im) \le \frac{3\pi}{2}$$로 선택한다.

그림의 contour에서 $f(z)$가 analytic하므로 $$\int_\Gamma f(z) dz = 0$$이고, $C_1$: $z-im = (s-m) e^{i \pi/2} ~~(s: \infty\rightarrow m)$, $z+im = (s+m) e^{i\pi/2}$, $z=is$이므로 $$\int_{C_1} f(z) dz = \int_{\infty}^m \frac{  (is) e^{-sr} (ids)}{ \sqrt{s^2 - m^2 } e^{i\pi/2}} = -i \int_m^\infty \frac{s e^{-sr} ds }{ \sqrt{ s^2 - m^2}} .$$

$C_2$: $z-im= (s-m) e^{-i 3\pi/2} ~~(s: m\rightarrow \infty)$, $z+im = (s+m) e^{i \pi/2}$, $z=is$이므로

$$\int_{C_2} f(z) dz = \int_m^\infty \frac{ (is) e^{-sr} (ids) }{ \sqrt{s^2 - m^2 }} e^{-i \pi /2} = -i \int_m^\infty \frac{s e^{-sr}ds }{\sqrt{s^2 - m^2} }.$$

그리고 $C_\epsilon:~ z=\epsilon e^{i \theta}$에서는 $$ \int_{C_\epsilon} f(z) dz  = O(  \sqrt{\epsilon})\rightarrow 0.$$

$C_\infty$에서 $z=R e^{i\theta} ~(\theta:0\rightarrow \pi)$로 놓으면 $|e^{izr}|  \le  e^{- R \sin \theta r} \rightarrow 0$이므로 

$$\int_{C_\infty} f(z) dz \rightarrow 0.$$

따라서 $x$-축을 따라 적분한 값 $I$는

$$I = \int_{-\infty}^{\infty} \frac{p e^{i p r}dp}{ \sqrt{p^2 + m^2 }} = 2i \int_m^\infty \frac{se^{-sr} ds} {\sqrt{s^2 - m^2}} =i\times \text{positive number}.$$ 우변의 적분은 Modified Bessel function of the second kind $$I=2i \times m K_1(mr)$$로 표현이 된다.

 

728x90

'Mathematics' 카테고리의 다른 글

Integration along a branch cut-011  (0) 2021.01.04
Integration along a branch cut-010  (0) 2021.01.04
Integration along branch cuts-008  (0) 2021.01.03
Integration along a branch cut-007  (1) 2020.12.31
Integration along a branch cut-006  (0) 2020.02.28
,

$$I=\text{Pr} \int_{0}^{\infty} \frac{x^a}{x+b} dx , \quad - 1 < a <0,\quad b<0$$

복소함수 $f(z)= \frac{z^a}{z+b}$를 그림과 같은 contour $\Gamma=C_\epsilon +C_1 + C_2 +C_3 +C_\infty + C_4 +C_5 +C_6$에 대해서 적분할 것이다. $z=0,\infty$이 branch point이므로 branch cut을 $+x$축으로 선택하고, $z=-b>0$가 simple pole이므로 Cauchy principal value을 구하는 문제이다. 주어진 contour에서 analytic 하므로 $\int_{\Gamma} f(z) dz = 0$.

1. $C_\epsilon$: $z=\epsilon e^{i \theta}~(\epsilon\to 0) $

$$\int_{C_\epsilon} f(z) dz = O( \epsilon^{1+a})\longrightarrow 0.$$

2. $C_1 + C_3$: $z=x e^{i0} ~(x: 0\rightarrow \infty)$,

$$\int_{C_1+C_3} f(z) dz = \text{Pr} \int_0^\infty \frac{(x e^{i0})^a }{x+b} dx = I.$$

3. $C_4 + C_6$: $z= xe^{2\pi i} ~(x:  \infty \rightarrow 0)$,

$$\int_{C_4 +C_6} f(z)dz = \text{Pr}\int_\infty ^ {0} \frac{ (x e^{2\pi i})^a }{x + b} dx =- e^{2\pi ai} I .$$

4. $C_2$: $z= (-b) e^{0i}, ~z+b= \epsilon e^{\theta i}~(\theta:\pi \rightarrow 0)$

$$\int_{C_2} f(z)dz = \int_{\pi}^{0} \frac{ (-be^{0i})^a   }{\epsilon e^{\theta i} } i\epsilon e^{\theta i} d \theta = -i \pi (-b )^a .$$

5. $C_5$: $z=(-b) e^{2\pi i} ,~ z+b = \epsilon e^{\theta i}, ~(\theta: 2\pi \rightarrow \pi)$,

$$\int_{C_5} f(z) dz =\int_{2\pi}^{\pi} \frac{ (-be^{2pi i})^a }{ \epsilon e^{\theta i}} i \epsilon e^{\theta i} d \theta = -i \pi (-b)^a e^{2\pi a i}.$$

6.$C_\infty $:  $z= R e^{i \theta }~~(R\to \infty)$

$$\int_{C_\infty} f(z) dz= O(R^a) \longrightarrow 0.$$

따라서,$$\int_{\Gamma} f(z)dz = I (1 - e^{2\pi ai }) - i\pi (-b)^a (1 + e^{2\pi a i}) = 0$$

$$\therefore~ I= \text{Pr}\int_0^\infty \frac{x^a }{x +b} dx = - (-b)^a\pi \cot (\pi a).$$

728x90
,