$$I = \int_1^\infty \frac{dx}{x\sqrt{x^2-1}}$$

복소 함수 $$f(z)= \frac{1}{z\sqrt{z^2-1}}$$의 contour 적분을 이용해서 구한다. $z =\pm 1$이 branch point이므로 branch cut을 그림처럼 잡는다.

위상은 $0 \le \text{arg}(z-1)\le 2\pi$, $-\pi \le \text{arg}(z+1) \le \pi$로 선택할 수 있다. $z=0$이 $f(z)$의 simple pole이고  residue가 

$$ \text{Res}f(z=0) = \frac{1}{i}$$이므로 residue 정리에 의해서($\Gamma = \sum   C_k$)

$$ \oint_\Gamma f(z) dz = 2\pi i \times \text{Res}f(z=0) = 2\pi.$$

$C_1$:   $z= x e^{i0}~(x: 1 \rightarrow \infty)$, $z-1=(x-1)e^{i0}$, $z+1 = (x+1)e^{i0}$이므로

$$\int_{C_1} f(z)dz = I$$

$C_3$: $z= x e^{i2\pi }~(x:\infty \rightarrow 1)$, $z-1=(x-1)e^{i2\pi }$, $z+1 = (x+1)e^{i0}$이므로

$$\int_{C_3} f(z)dz = \int_\infty^1 \frac{d}{x\sqrt{x^2-1} e^{i\pi}   } = I. $$

$C_4$: $z= x e^{i \pi }~(x:1 \rightarrow \infty)$, $z-1=(1+ x)e^{i\pi }$, $z+1 = (x-1)e^{-i \pi}$이므로

$$\int_{C_4} f(z)dz = \int_1^\infty \frac{d}{(-x)\sqrt{x^2-1}   } = I. $$

$C_6$: $z= x e^{i\pi}~(x: \infty \rightarrow 1)$, $z-1=(1+ x)e^{i\pi }$, $z+1 = (x-1)e^{i \pi}$이므로

$$\int_{C_6} f(z)dz = \int_\infty^1 \frac{-dx}{(-x)\sqrt{x^2-1}e^{i\pi}   } = I. $$

그리고,

$$\int_{C_2} f(z)dz = \int_{C_5} f(z) dz = O(\sqrt{\epsilon}) \rightarrow 0 \\ \int_{C_\infty} f(z)dz =  O( 1/R) \rightarrow 0$$

이므로

$$ I = \int_1^\infty \frac{dx}{x \sqrt{x^2-1} } = \frac{\pi }{2}$$ 이 결과는 $x=\text{cosh}(t)$로 치환을 해서 구하는 편이 더 쉬울 수 있다.

728x90
,

$$I=\text{Pr} \int_{0}^{\infty} \frac{x^a}{x+b} dx , \quad - 1 < a <0,\quad b<0$$

복소함수 $f(z)= \frac{z^a}{z+b}$를 그림과 같은 contour $\Gamma=C_\epsilon +C_1 + C_2 +C_3 +C_\infty + C_4 +C_5 +C_6$에 대해서 적분할 것이다. $z=0,\infty$이 branch point이므로 branch cut을 $+x$축으로 선택하고, $z=-b>0$가 simple pole이므로 Cauchy principal value을 구하는 문제이다. 주어진 contour에서 analytic 하므로 $\int_{\Gamma} f(z) dz = 0$.

1. $C_\epsilon$: $z=\epsilon e^{i \theta}~(\epsilon\to 0) $

$$\int_{C_\epsilon} f(z) dz = O( \epsilon^{1+a})\longrightarrow 0.$$

2. $C_1 + C_3$: $z=x e^{i0} ~(x: 0\rightarrow \infty)$,

$$\int_{C_1+C_3} f(z) dz = \text{Pr} \int_0^\infty \frac{(x e^{i0})^a }{x+b} dx = I.$$

3. $C_4 + C_6$: $z= xe^{2\pi i} ~(x:  \infty \rightarrow 0)$,

$$\int_{C_4 +C_6} f(z)dz = \text{Pr}\int_\infty ^ {0} \frac{ (x e^{2\pi i})^a }{x + b} dx =- e^{2\pi ai} I .$$

4. $C_2$: $z= (-b) e^{0i}, ~z+b= \epsilon e^{\theta i}~(\theta:\pi \rightarrow 0)$

$$\int_{C_2} f(z)dz = \int_{\pi}^{0} \frac{ (-be^{0i})^a   }{\epsilon e^{\theta i} } i\epsilon e^{\theta i} d \theta = -i \pi (-b )^a .$$

5. $C_5$: $z=(-b) e^{2\pi i} ,~ z+b = \epsilon e^{\theta i}, ~(\theta: 2\pi \rightarrow \pi)$,

$$\int_{C_5} f(z) dz =\int_{2\pi}^{\pi} \frac{ (-be^{2pi i})^a }{ \epsilon e^{\theta i}} i \epsilon e^{\theta i} d \theta = -i \pi (-b)^a e^{2\pi a i}.$$

6.$C_\infty $:  $z= R e^{i \theta }~~(R\to \infty)$

$$\int_{C_\infty} f(z) dz= O(R^a) \longrightarrow 0.$$

따라서,$$\int_{\Gamma} f(z)dz = I (1 - e^{2\pi ai }) - i\pi (-b)^a (1 + e^{2\pi a i}) = 0$$

$$\therefore~ I= \text{Pr}\int_0^\infty \frac{x^a }{x +b} dx = - (-b)^a\pi \cot (\pi a).$$

728x90
,

$$ I = \int_0^\infty \frac{dx} { x [ (\log x)^2+\pi^2]}=1$$

복소함수 

$$f(z) = \frac{1}{z \log z}$$

을 그림과 같은 contour에 대한 적분을 고려하자.

Branch point가 $= 0, \infty$이므로 $-x$축을 cut line으로 선택하자. 그러면 $-\pi \le \text{arg}(z)\le \pi$로 선택할 수 있다. 그리고 

$$\oint f(z) dz = \int_{C_1 + C_2 + C_\epsilon + C_{\epsilon'}+ C_\infty} f(z) dz = 0$$ 

경로 $C_1$에서는 $z= x e^{i \pi},~(x:\infty\to 0)$이므로

$$ \int_{C_1}  f(z) dz = \int_\infty ^0 \frac{-dx}{(-x) (\log x + i\pi) }= - \int_0^\infty \frac{dx}{ x(\log x +  i \pi)}$$

경로 $C_2$에서는 $z= x e^{- i\pi}, ~(x: 0\to \infty)$이므로

$$ \int_{C_2} f(z)dz = \int_0^\infty \frac{-dx}{(-x)(\log x - i\pi) } = \int_0^\infty \frac{dx}{ x(\log x - i\pi)}$$

경로 $C'_{\epsilon}$에서는 $z-1= \epsilon e^{i \theta}$로 놓으면 ($\log(1+\epsilon)\to \epsilon$)

$$ \int_{C'_{\epsilon }} f(z) dz = \int_{\pi}^{-\pi}  \frac{i\epsilon e^{i \theta} d \theta}{(1+ \epsilon e^{i \theta} ) [\log (1+\epsilon  e^{i \theta})]} = \int_\pi^{-\pi} \frac{i\epsilon e^{i \theta} d \theta }{\epsilon e^{i \theta}} = -2\pi i$$

그리고 $C_\epsilon(z=\epsilon e^{i \theta}),  ~C_\infty(z=Re^{i \theta})$에서는 $$\int _{C_\epsilon} f(z) dz \sim \frac{1}{\log \epsilon} \to 0 \\ \int_{C_\infty} f(z) dz \sim \frac{1}{\log R} \to 0 $$이므로

$$ \int_0^\infty \left( \frac{1}{\log x -i \pi} - \frac{1}{\log x + i\pi}\right) dx = 2\pi i ~~~\to ~~~ I = 1$$

 

728x90
,