\begin{align} 2025 &=(20+25)^2\\ &= 45^2 = (1+2+3+4+5+6+7+ 8+9)^2 \\ &=\left(\frac{9\times 10 }{2}\right)^2 = 1^3 + 2^3 + 3^3 +4^3 + 5^3+6^3 + 7^3 +8^3+9^3 \end{align}$$ \sqrt{2025} = 45 = (2+1)^2 \cdot 5 = (2+0! )^2 \cdot 5$$
\begin{align}2025&=40^2 + 20^2 + 5^2 \\ &= (6^2 + 2^2)^2 + (4^2 + 2^2)^2 + (1^2 + 2^2) ^2 \\ &= ( 2^2 + 4^2 + 5^2)^2\end{align}
728x90
'Mathematics' 카테고리의 다른 글
Integration along a branch cut-047 (0) | 2024.12.29 |
---|---|
Integrate 1/(1+sin^2 θ) from 0 to 2π (1) | 2024.12.29 |
Integration along a branch cut-046 (0) | 2024.12.27 |
Integration along a branch cut-045 (47) | 2024.12.23 |
Integration along a branch cut-044 (0) | 2024.12.21 |